24,071 research outputs found

    Latent demographic profile estimation in hard-to-reach groups

    Get PDF
    The sampling frame in most social science surveys excludes members of certain groups, known as hard-to-reach groups. These groups, or subpopulations, may be difficult to access (the homeless, e.g.), camouflaged by stigma (individuals with HIV/AIDS), or both (commercial sex workers). Even basic demographic information about these groups is typically unknown, especially in many developing nations. We present statistical models which leverage social network structure to estimate demographic characteristics of these subpopulations using Aggregated relational data (ARD), or questions of the form "How many X's do you know?" Unlike other network-based techniques for reaching these groups, ARD require no special sampling strategy and are easily incorporated into standard surveys. ARD also do not require respondents to reveal their own group membership. We propose a Bayesian hierarchical model for estimating the demographic characteristics of hard-to-reach groups, or latent demographic profiles, using ARD. We propose two estimation techniques. First, we propose a Markov-chain Monte Carlo algorithm for existing data or cases where the full posterior distribution is of interest. For cases when new data can be collected, we propose guidelines and, based on these guidelines, propose a simple estimate motivated by a missing data approach. Using data from McCarty et al. [Human Organization 60 (2001) 28-39], we estimate the age and gender profiles of six hard-to-reach groups, such as individuals who have HIV, women who were raped, and homeless persons. We also evaluate our simple estimates using simulation studies.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS569 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Comment: Quantifying the Fraction of Missing Information for Hypothesis Testing in Statistical and Genetic Studies

    Full text link
    Comment on "Quantifying the Fraction of Missing Information for Hypothesis Testing in Statistical and Genetic Studies" [arXiv:1102.2774]Comment: Published in at http://dx.doi.org/10.1214/08-STS244A the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Thinking Fast and Slow with Deep Learning and Tree Search

    Get PDF
    Sequential decision making problems, such as structured prediction, robotic control, and game playing, require a combination of planning policies and generalisation of those plans. In this paper, we present Expert Iteration (ExIt), a novel reinforcement learning algorithm which decomposes the problem into separate planning and generalisation tasks. Planning new policies is performed by tree search, while a deep neural network generalises those plans. Subsequently, tree search is improved by using the neural network policy to guide search, increasing the strength of new plans. In contrast, standard deep Reinforcement Learning algorithms rely on a neural network not only to generalise plans, but to discover them too. We show that ExIt outperforms REINFORCE for training a neural network to play the board game Hex, and our final tree search agent, trained tabula rasa, defeats MoHex 1.0, the most recent Olympiad Champion player to be publicly released.Comment: v1 to v2: - Add a value function in MCTS - Some MCTS hyper-parameters changed - Repetition of experiments: improved accuracy and errors shown. (note the reduction in effect size for the tpt/cat experiment) - Results from a longer training run, including changes in expert strength in training - Comparison to MoHex. v3: clarify independence of ExIt and AG0. v4: see appendix
    • …
    corecore